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STATIONARY CURRENTS IN OSCILLATING FLOWS IN TUBES IN THE 

CASE OF QUASISTATIONARY TURBULENCE 

E. I. Permyakov UDC 532.517.4:534.213 

It is well known that stationary flows are generated during the excitation of standing 
waves in resonators [i], substantially affecting heat and mass transfer [2, 3]. In the 
literature one can find a set of specific results in this field of study, but their range 
of application is comparatively narrow. 

We clarify what we have in mind. Consider flows in resonating tubes. In the case of 
oscillating flows the current is characterized by two criteria: one usually uses the Strouhal 
number Sh = 2Rw/u m and oscillation Reynolds number Re c = 2Rum/V (R is the tube 
radius, ~ is the cyclic oscillation frequency, u m is the velocity oscillation 
amplitude, and v is the kinematic viscosity). In the Rec--Sh plane one can indicate 
three regions: I -- the laminar flow regions (in which are located all results 
available in the literature), II - the region of turbulent flows, in which the nonstationary 
character of turbulence is substantial, and III- the region in which turbulence can be as- 
sumed to be quasistationary (Fig. i). The boundaries of these regions are curves I and 2, 
respectively, for 

Sh = Rec/160 000; (1 )  

Sh = 0,158/Re~ ~s (2)  

The boundary (i) was obtained as a result of generalizing the experimental and theoretical 
data of [4], and that of (2) is the result of theoretical analysis [5]. The boundary (2) 
corresponds to the condition Z = 4Rm/%Um~< i, where % is the hydraulic resistance coefficient, 
and the dependence %(Rec) in (2) is taken from the Blasius law for smooth-walled tubes [6]. 
Obviously, the broadening of the investigated region of secondary flows requires taking into 
account the possible flow turbulization. 

In the present study we investigate theoretically stationary flows in the case of quasi- 
stationary turbulence, i.e., in region III, which can be extended substantially if the tube 
walls are rough, i.e., if % = const [6]. 

Kazan'. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 56-62, 
September-October, 1993. Original article submitted February 19, 1992; revision submitted 
August 19, 1992. 
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At one end of a long cylindrical tube (R/L = E ~ i) filled by a gas let there be located 
a source of harmonic oscillations (such as a planar piston), and let the other end be either 
closed or communicated with thesurrounding medium. Let the amplitude of the resulting os- 
cillations and the frequency be such that Um/~L < i, while Sh and Re c are located in region 
III. Both these conditions can be satisfied simultaneously, since the first of them can be 
written in the form s ~ Sh/2. We introduce the parameter X = Ip/L = 2~/(x + I)~Lu~ - the ratio 
of the length of disruption formation to the length of the tube (x is the adiabatic index, 
and c o is the speed of sound in the unperturbed gas). To solve the gas oscillation problem 
one can then Use perturbation theory series for v 2v/~Im - w01L/c 0 ~ 4 (~0 is close to the 
resonance frequency ~) in the case of a closed tube [7] and when E ~ 1 if the tube is open 
at one end [8]. Neglecting nonlinear terms in the continuity, motion, and adiabat equations, 
we write down 

- - =  - -  _ R o ~ O - d  Op 1 1 0 ( 0~) 
0P 0, p = p, - - - - - - - - -  -- e - -  + Vef f y 

Ra~ O~ I 0 - Oi~ 
co o, + 7 ~ (yv) + ~ ~ = O. 

The following dimensionless variables were introduced here: �9 = wt is time, yR = r, x = zL 
are the radial and longitudinal coordinates of the cylindrical coordinate system, u = uc 0, 
v = ~c 0 are the longtitudinal and radial velocity components, p = 90 (I + 9), p = 90c0 ~ (I +p) 
are the density and the pressure, and the subscript 0 referes to unperturbed quanti- 
ties. The system of equations (3) was obtained following expansion of the Navier-Stokes, con- 
tinuity, and adiabat equations, written down in cylindrical coordinates, in powers of the 
small quantities ~ and e. The effective viscosity coefficient Vef f is the sum ~eff = v + ~t 
(v t is the turbulent viscosity, for whose determination one uses the quasistationary hypo- 
thes is). 

Integrating (3) over the cross section of the tube, and using the boundary conditions 
~(y = i) = 0, 3fi/~y = 0 at y = 0, we obtain 

1 

Ro, o _ ~ o_~ + Y o~] 
co o't dyyu = 20z ~oR ' ( 4 )  

0 " y=l  
l 

2 co O~ + ~ dyy-ff = O. 
0 

The  s o l u t i o n  o f  s y s t e m  ( 4 )  i s  s o u g h t  i n  t h e  f o r m  u = f ( y ) ~ p ( z ) e x p ( i x ) , - p = ~ ( z ) e x p ( i x ) .  S u b s t i t u -  
t i n g  i t  i n t o  ( 4 ) ,  a n d  a s s u m i n g  t h a t  v t  d e p e n d s  on y o n l y ,  we h a v e  

( s )  
u (1~ = i f  (y) CC ~ sin (k 'z  + cO exp (i~), p"~ = 2a vrl + i~ C cos (k 'z  + c~) exp (ix). 

i 

H e r e  C, 6 ,  a n d  ~ a r e  r e a l  a n d  c o m p l e x  c o n s t a n t s ,  ~ = ~I/atoRi; k ' =  k V'-I + i~; k = teL/co; a = f d y y / ( y ) ;  

y = [veff  y d f / d y  l ly=l., o 

Let the oscillation source be located at z = 0, and let the coordinate of the other end 
of the tube be z = i. The solutions (5) must satisfy the boundary conditions 

u-~ (z = 0) = - -  iM0 cxp (ix) ( 6 )  

(M 0 = u0/c 0 is the Mach number for the velocity oscillation amplitude of the source, and the 
subscript s denotes averaging over the tube cross section) and the boundary condition 

.-~ (~ = l )  = o ( 7 )  

for a closed tube, or 
E (z = l) = o (8 )  

for a tube with open ends. The whole study is carried out for frequencies substantially 
lower than the resonance frequencies; therefore, condition (8) is fully acceptable. For the 
behavior of the more complicated nonlinear boundary condition see [9]. Substituting (5) into 
(6)-(8), and putting 13 << i, one obtains for a closed tube 

~0 = R e a l a  = ~ -  k, ~ '  = I m ~  = - ~ k ~ ,  t g ~ = -  c tgk,  ( 9 )  

Me r + ,g2 ~ Me 1 
/q~ = 2a  sin k '  

C = - -  2a  s i n k  - ~ - t g ~ , c o s k  
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and for a tube open at one end 

a 0 = ~ - k ,  a ' = - ~ k ~ ,  t g ~ =  tgk,  

Mo ~1 + tg2b Mo 1 
C = - 

2a k~ 2a cos k" 
cos k + ~'- tg b "sin k 

(io) 

It follows from (9) and (i0) that the first resonance in a closed tube occurs at k 0 = ~, and 
in an open tube - at k 0 = ~/2. 

We determine the profile f(y) in (5). It is assumed that near the tube wall (y = i) 
there is a viscous sublayer in which Veff = v, while at a distance i - y* is found a region 
of evolving turbulence. It can then be assumed that in the turbulent flow core is transported 
the tangential stress T w existing at the wall, i.e., in the flow core 

~ = ~t (II) 

(~t is the tangential stress in the turbulent core). The assumption (ii) is quite crude, 
but leads to good results in the case of stationary flows [6]. It is assumed that at each 
moment of time ~w and T t are the same as for a stationary flow. This assumption :is the 
essence of the quasistationarity hypothesis. Using the Prandtl equation [6] for Tt, and the 
Blasius law [6] for ~w, as well as averaging (11) over z and ~, we have 

Ou 2 ~'O~me X -- ( 1 2 )  
(x~)~ = o2 (R - r) 2 p ~ r  ' ~ = 8 ' (2Rwm~v)o,2s 

(Ume is the mean over cross section and length, and a = 0.4 is an empirical constant). Sub- 
stituting expression (5) into (12) for 8 ~ I, and requiring that fz(Y = O) = i, the profile 
f1(Y) is obtained in the turbulent core of the flow: 

0,059 (2al I 1.75 F (0,375) 
:~(y)= i + e l . ( 1 - y ) ,  e~- eg,~5iT) ;V~" (13) 

H e r e  F ( x )  i s  t h e  E u l e r  g a m m a - f u n c t i o n ,  Rec  = 2RC~/v; h = 1 + sin 2 ~ 0 / 2 k ;  l =  2 s i n  ( s  + a0) sin ( k / 2 ) .  

By m e a n s  o f  ( 1 3 )  o n e  c a n  c a l c u l a t e  a b y  n e g l e c t i n g  t h e  t h i c k n e s s  o f  t h e  v i s c o u s  s u b l a y e r :  
a = (1  -- 3E/2)/2. 

The profile fa(Y) in the viscous sublayer, where T w is constant in the stationary case, 
is 

1,75 
1 (%)~ 0 , ~ 7 4  (2all Re 0,75 f20 ' )=C~o ( R - r ) = D ( 1 - Y ) '  D = ~ F ( O ' 3 7 5 )  ~k) ~c (14) 

It follows from (14) that ~ = - ~gD/2a, ~o = (2v/~)t~2/Rfin (5). 

The radial velocity component is found from the equation of continuity. Imposing the 
boundary conditions v(y = i) = 0, v(y = 0) = 0, we find 

~1) = _ ~ (y) cos (k'z + a) exp (ix), ( 1 5 )  

where the profiles g1(Y) far from the wall and g2(Y) near the wall are given by the expres- 
sions 

g~(y)=k'~r y a+--7---exp(i~) +~ y- In(l-y)-I exp(i6) , 

(16) 

g~(y)=k'~c a 3 ' -  + 7  3 ' - 5 / - ~  exp( i~)  . 

T h e  t u r b u l e n t  v i s c o s i t y  v t i s  d e t e r m i n e d  a s  f o l l o w s :  

.~ = o (R - r) ~ / 1 ( ~ 4 ~  ~ e f f  = v [1 + w(1 - y)], 
o ' ( 1 7 )  

1 
w = ~ o2C Re0E V~,  Re0 = Rco/v. 

In deriving Eqs. (17) we used the equation for the turbulent viscosity in a stationary flow 
and expressions (9), (i0) for ~0- 
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In Fig. 2 we compare the theoretical profile obtained (13), (14) with experiment [i0]. 
The dots in Fig. 2 correspond to the experimental value of the quantity (Uma x - Umin)/U(y = 
0), where Uma x and Umi n are the maximum and minimum velocity values for a given y during an 
oscillation period. This method of handling the experimental results makes it possible to 
eliminate the constant velocity component. It is seen from Fig. 2 that the theoretical 
profile is in satisfactory agreement with the experimental one. Is is necessary to point out 
that expressions (13) and (14) were obtained under the assumption of quasistationary flow, 
i.e., for Z < i, while in the experiments [i0] Z ~ 3. The results of [5], however, make it 
possible to conclude that the effect of nonstationarity on the velocity profile becomes sub- 
stantial only when Z > 4. The phase shift 6 in Eqs. (5) is independent of y. The same re- 
sults follows from the experimental data [i0]. Thus, it can be stated that the expressions 
for fi(1) and f(y) are, on the whole, verified by experiment [i0]. 

The secondary flows are described by the equations obtained within the second order 
of expanding the Navier-Stokes, continuity, and adiabat equations in power series of the 
small quantity u, and are the solution of the system [Ii] 

--0y -- . . \ oy / ( 1 8 )  

y Oy Oz , + 

where the angular brackets denote averaging over time. 

The solutions of Eqs. (18) must satisfy the following boundary conditions: on the tube 
wall at y = i 

~<~ (y = 1) = o, 7 ~' (y = 1) = o; ( 1 9 )  

and on the tube axis (y = 0) it is sufficient to require finiteness of 8u(2)/ay and ~(2) [6]. 
At y = y*, where the profiles (13) and (14) are matched, one must put 

~?) (y = y*) = ~2) (y = y*) ,  ~12) (y = y*)  = ~2 ) ( y  = y*) ( 2 0 )  

(fi!2) and fi~2) denote the solutions far from and near the wall, respectively). Finally, one 
more condition is imposed by the requirement that the fluid divergence in the secondary flow 
vanish: 

y. i 
f u~2'ydy + f u~)ydy = O. ( 2 1  ) 
0 y* 

In  t h e  f o l l o w i n g  c a l c u l a t i o n s ,  t o  s i m p l i f y  t h e  e x p r e s s i o n s  we t a k e  i n t o  a c c o u n t  t h a t  
~ ~, E ~ 1, and we n e g l e c t  c o n t r i b u t i o n s  ~~2,  ~E, E s i n  6, and so on.  B e s i d e s ,  as  i s  s een  

f rom t h e  n u m e r i c a l  c a l c u l a t i o n ,  t h e  c o n t r i b u t i o n  o f  t e rm s  p r o p o r t i o n a l  t o  s i n h k $ ( z  - I ) ,  
cosh  k~(z  - 1) i s  s m a l l e r  t h a n  t h e  c o n t r i b u t i o n  o f  t h e  r e m a i n i n g  t e r m s  by a l m o s t  two o r d e r s  
of magnitude, and therefore these terms are omitted. For the same reason one may omit the 
terms proportional to B/Re0Ek (Re0Ek ~ i). Substituting expressions (5), (13)-(17) into 
(18) and invoking conditions (19)-(21), we obtain 

uL _ 1 F~(y) Cl(z) + ~  2(1 - a c o s b )  F 2 ( y ) - 3 1 n t - -  
Re0~:kC 2 2w 

_3w1 F, (y)] s i n 2 ( k z + ~ 0 ) + C 2  (Z)}, t =  1 + w ( 1 - y ) ,  w l = ( w +  l)/w, 

Re~ 2 = ~ -g- [2a cos 3" Gt (y) - DG2 (y)] sin 2 (kz + ao) + 
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2 2 3 ! y y v 
+ C ~ ( z l l n y +  C;(z) ,  GI(y) = 1 + y2-  y3' G2(y) = - ' ~ + ~ - ~  +~-2, 

P.eo(~k)2C 2 = 2--~y ~- 3]4 (y) + 2 (1 -- a COS ~) ]2 (Y) -- ~ J3 (Y x 

/c~(~)~ + c~(,) __~7 ) = c;(~)/ 
X COS 2 (kz + ao) + ~ ]  y ' Reo(~k)2 C 2 t6k 

DY2 [2acosb l l (y ) -DI2(y)]cos2(kz+ao)-~Y l n y -  + ~ y + - -  ( 2 2 )  
4 Y ' 

2 2 3 1 y y y 
1 y r 12 (Y)  = 9 + g -  ~ + 7-2" II  ( y )  = 5 + g - I-5' 

The functions Fi(Y), Ji(Y), Ci(z), C~(z) are given in the Appendix. 

The result of the calculations performed can be written in the form 

Re~kC2 = U ( y )  s i n  2(kz  + s o ) ,  Red ek )2C 2 = V(y)  c o s 2 ( k z  + ao). 

Figure 3 provides plots of the functions U(y) and V(y) (curves I and 2, respectively). The 
calculation was carried out for a closed tube with the parameters Re c = 70,000, Sh = 0.0!, 
e = 0.5.10 -3, M 0 = 0.05, k = ~[/4 (with the resonance frequency being k 0 = ~). As seen from 
Fig. 3, the secondary flow in a turbulent oscillatory flow is a ring vortex, filling the 
whole tube. In the region 0 ~ y ~ y* the structure of this vortex recalls the structure of 
the Rayleigh vortex, formed in a laminar oscillatory flow [i]. Near the wall and for y* ~ y ~ ! 
the structure of this vortex recalls the structure of the Schlichting vortex in a laminar 
flow [6]. On the whole the qualitative flow pattern is similar to that in the case of 
laminar flow [ii]. If, however, the velocity in the boundary layer vortex in a laminar 
flow does not exceed one third of the velocity at the center of the tube, then these veloci- 
ties almost coincide in the case under consideration. This velocity matching is, most prob- 
ably, related to the increase in the effective viscosity upon moving away from the tube wall. 

It is well known that the pattern of secondary flows in a channel in the case of a 
laminar oscillatory flow can vary substantially if by transforming from Euler to Lagrange co- 
ordinates [3]; more precisely: the Schlichting vortex vanishes in Lagrange coordinates. The 
transition equations are 

~i~ = 72~ + ~ ~-F- ~ o-3- 

(23) 

Substituting expressions (5) and (15) into (23), we obtain corrections Aft(2) and AO(2) to 
(22). It turns out that their contribution is negligibly small far from the tube wall, there- 
fore we write down their expressions in the boundary layer region: 

[(1)(1 )] 
ReoekC 2 -  8Reosk ad - - 

Reo(~k)2C = 8Reoek ( l - - y )  ad - y  +~D y--~)7--~y ._3 / + y  

d = 2 s i n  5 - [~ c o s  ;~. 

Different versions can be implemented in the case analyzed of turbulent flows due to a com- 
plicated dependence of the secondary flow velocity on the oscillation amplitude. Thus, the 
corrections (24) are small for the case illustrated in Fig. 3, and do not change the struc- 
ture of the secondary flow. 

In conclusion the author is grateful to R. G. Galiullin and V. B. Repin for their in- 
terest in this study and for their comments. 

Appendix. The functions and constants appearing in Eqs. (22): 

Fl (y) = Y + w| In (1 - y /w  0, 
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Li2(x) 

f o r  Ix] 

c ~ ( z )  = 
i s  

is 

and 

F~(y)=(w,  l n t -  1 +y)  l n ( 1 - y ) - y + w ~ L i ~ ( 1 - t ) ,  

F3 (y) = In (1 - y) In (t/y) + Li~ (1 - t) - Li~ (1 - y), 

E u l e r  d i l o g a r i t h m ;  f o r  Ix] < 1 t h e  d i l o g a r i t h m  i s  d e f i n e d  by t h e  

Li~ (x) = ~ ,C/k ~, 
k=t  

[arg  ( - x ) [  < ~ t h e  a n a l y t i c  c o n t i n u a t i o n  i s :  

( ~ )  ~ ~ Li2(x)=Li2 ~ + ~ l n  ( 1 - x ) - l n ( - x ) l n ( 1 - x )  6 ' 

,3 ')] J~(Y)=5 y - V  1 In 1 - ~  + - -1+~- -~  d ~ ( y ) = - ~ - ( ~ - / ) x  
W 1 WI 

x l n 2 t + w t  O ~ - / ) l n w +  2 - 2 - - y - w  l n t +  ( l + 2 y )  x 

l) (29wi wi ,,14) 
3 w - ~  T T - q T  w ] y -  ~-~-- l n w -  + + ~ y  / ,  

the 

x l n ( l - y ) + ~  l n w +  2 

2 2 1 [ 
J3(Y) = w~-y i n ' t +  [(1 

series 

1 - y2 Y 3 + 2j__J y2 + 
--1 Li2(1 -Y) - y21nyln(I 'Y)--- '-4--1n(1-Y)+4(2+y)Iny 24 

_ wl - 3' Y (2wl + y),  + ~ \ w  lnw 2w ) y' J 4 ( Y ) - ~ l n t + ~  

S ( y )  = ~ (1 - y)k+1 1 + (k + l ) y  

3 ~ ( 2 ) / 3 z ,  and in  c a l c u l a t i n g  Cz (z )  t h e  f o l l o w i n g  boundary  c o n d i t i o n  3 ~ ( 2 ) / 3 z  = 0 
imposed at z = 1 

C~(z)= 4k [ 1 ] , 
l - y * 2  - - Y * ~ 5 ( z )  + C 3 ( z ) - - ~ d P ~ ( z ) + d P , ( z )  - - 4 ~ , ( z ) ,  C 2 ( z ) =  

= 1-4w {-~t2Cl(z)+21ny*'dPl(z)+~t3dP3(z)- [l+y*2 (lrly* I)] --~ dP3(z) , 

C 3 ( z ) = - T w  3A4+2A2(1 - a c o s S ) -  w-~A3 cos2(kz+c~0), 

. 2 C2 (z) - ,2 I~C~ (z) - 2r (z) - O~. (z) + y.20~ (z) ], 
l - y  

C3(z)=-~C~(z)-O~(z),  C~(z)= l--*i x 

x -3i--cl (~) _ o,  (~) + ~ .~ [2o ;  ( 0  + (2 - y")  o~  (z) - y * ~ ;  (z) 1, 
2, t ( l -y  ) 

2 

A 2 = - ~ - o n w +  1), A~=~ \ ~ l n w + ~ )  In(1 + w) + S ( 0 ) - ~ ,  A4= 

wl 1 - y 1 I - y In y* 
=--2 In(1 + w), g t ~ = - - - 8  +-w F~(y*)-J~(Y* , 9 2 - -  8 - 

(1 - y.2)2 Jl (Y) In y* + 
8 w 

O l ( z ) = ~ ,  2 (1 -acosb )  

~ x sin 2 (kz + ao) - -~- 2a cos ~5 

[ I FI (Y*) 2Y .2 ' ~t3 2 1+ lny*-  = - ,  

[J2 (Y*) - A2 ] - 3 [J4 0'*) - A41 - 3 [J3 (y*) - A31 t X 
WI ] 
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402 (z) = ~-~ 14a cos ~ + sin 2 (kz + cto), 

E [ -- ___F3(Y*)] s in2 (k z+ao)+  4p~(z) =~w 2(1 - a c o s 6 )  F2(y*) 3 tn t*  3 Wl 

D . + ~ 3 '  [ 2 a c o s b ' G t ( y * ) -  DG2 (y*) l sin 2 (kz + ~o), 

O 4 7 a c o s b + - -  c o s 2 ( k z + a 0 ) ,  O0 (z )  = 24o 

[ 3 J3(Y*)] cOs2(kz+~176 E 3.r, (y*)  + 2 (1 - a cos ~) .r~ (y*) - ,,-7 
0 5 (Z) = 4wy* 

*2 
Oy [2a cos ~'I1 (Y*) - DI2 (y*) ] cos 2 (kz + Cto): 

4 
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RADIATION OF INTERNAL GRAVITATIONAL WAVES IN THE CASE OF UNIFORM 

MOTION OF SOURCES OF VARIABLE AMPLITUDE (THE PLANE PROBLEM) 

V. A. Gorodtsov UDC 532.58 

A uniformly moving source generates waves similar to Cherenkov radiation. In a liquid 
with stratified density these are internal gravitational waves. A fixed oscillating source 
generates another type of radiation of gravitational waves. When a source of variable ampli- 
tude is moving the variety of excited waves increases. Wave-forerunners appear which carry 
away energy in the direction of motion with a velocity exceeding the velocity of the source. 

The linear wave fields around an oscillating moving source were analyzed in [1-7] for the 
simplest types of stratification, a free surface and a discontinuous jump in the density. 
Below we estimate the energy losses of such sources for a more general form of stratification. 
The method of energy estimates also enables one to investigate more simply the main known and 
certain additional features of the radiation in the case of discontinuous stratification. 

In considering a mass source with an harmonically varying amplitude, moving uniformly 
horizontally in a stratified incompressible liquid, we will confine ourselves to analyzing the 
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